Formation of Hydrate From Single-Phase Aqueous Solutions

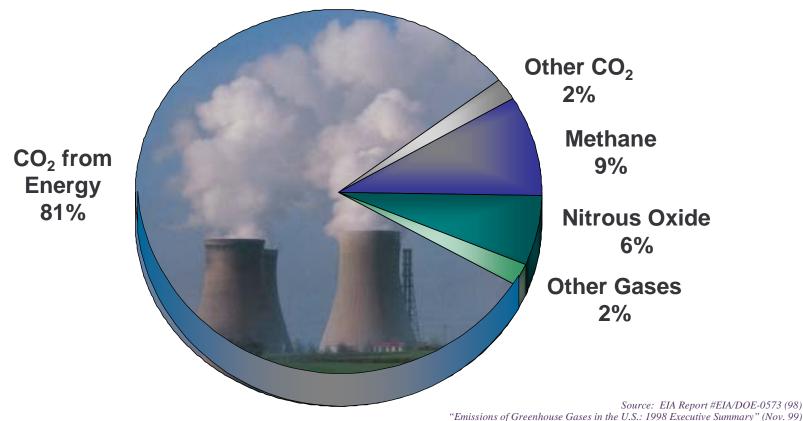
Robert P. Warzinski
U.S. Department of Energy
National Energy
Technology Laboratory
P.O. Box 10940
Pittsburgh, PA 15236-0940
412-386-5863
Robert.warzinski@netl.doe.gov

Coauthors

• Gerald D. Holder

University of Pittsburgh,
 ORISE Associate at NETL

• Yi Zhang,


University of Pittsburgh/NETL Student PartnershipProgram Student at theNETL

CO₂ from Energy is a Major Contributor to Anthropogenic Greenhouse Gas Emissions

U.S. GHG Emissions Weighted by Global Warming Potential (Equivalent Global Warming Basis)

Technological Carbon Management Options

Reduce Carbon Intensity

- Renewables
- Nuclear
- Fuel Switching

Improve **Efficiency**

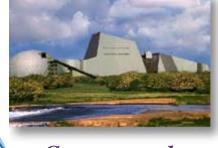
- Demand Side
- Supply Side

Sequester Carbon

- Capture & Store
- Enhance Natural Sinks

All options needed to:

- Affordably meet energy demand
- Address environmental objectives



Types of Sequestration Direct Indirect

Unmineable Coal Seams

Capture and Disposal of CO₂

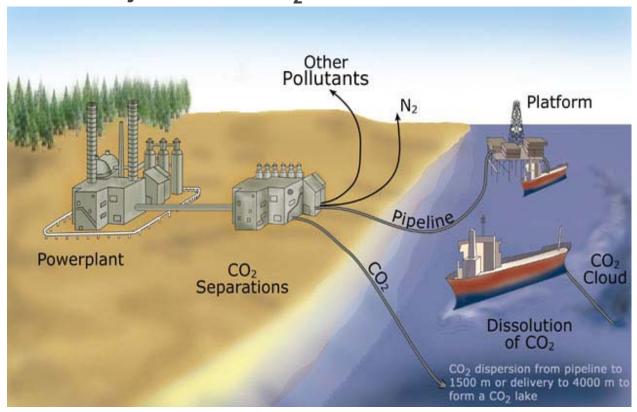
Deep Ocean Injection

Depleted Oil / Gas Wells, Saline Aquifers

Enhancing Natural CO₂ Sinks

Forestation

Iron or Nitrogen Fertilization of Ocean

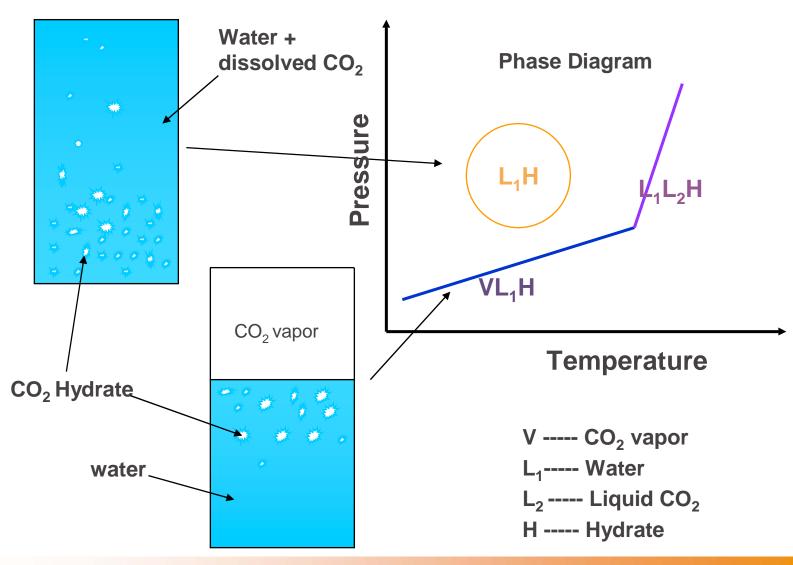


Enhanced Photosynthesis

Ocean Sequestration

Direct injection of CO₂ into the ocean

DOE Center for Research on Ocean Carbon Sequestration



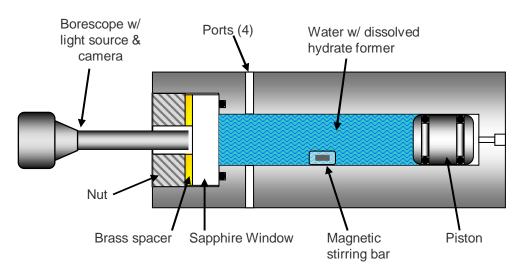
Implications from Previous Research

- Physical and chemical behavior of CO₂ in the deep ocean, especially formation of CO₂ hydrate, will impact the sequestration process.
 - Hydrate formed from a <u>two-phase</u> system (liquid or gaseous CO₂ in contact with seawater) is initially <u>less</u> dense than seawater.
 - Rising hydrate particles reduce sequestration efficiency.
 - Greater injection depths required.
 - Hydrate formed from a <u>single-phase</u> system (CO₂ dissolved in seawater) is initially <u>more</u> dense than seawater.
 - Sinking hydrate particles enhance sequestration efficiency.
 - Longer CO₂ residence times.

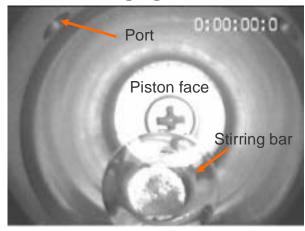
Hydrate Formation from Single-Phase Solutions

Status of Current Research

Fundamentals of hydrate formation


- Conducting experiments to validate thermodynamic model for predicting two-phase hydrate equilibrium (formation from singlephase aqueous solutions).
- Modifying and improving theoretical model for prediction of single-phase hydrate formation.

High-Pressure, Variable-Volume Viewcell


Features

- Direct observation of systems from 243 K to 473 K (-30°C to 200°C) at pressures to 138 MPa (20,000 psig).
- System pressure easily changed via internal piston.
- Remote monitoring and recording of observations.

High-Pressure, Variable-Volume Viewcell

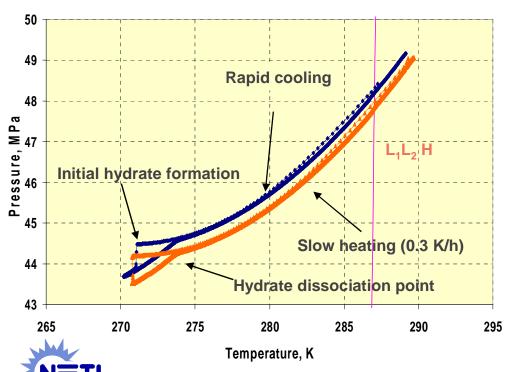
View through glass window

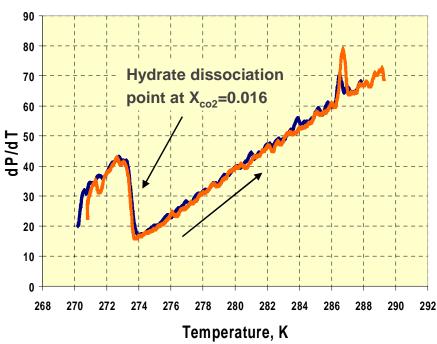
General Purpose Seawater (GPS) from Ocean Scientific International, Ltd. Cell at 5.8°C, 16 MPa.

High-Pressure Viewcell System

View showing syringe pumps, chamber, and computer monitoring and control system.

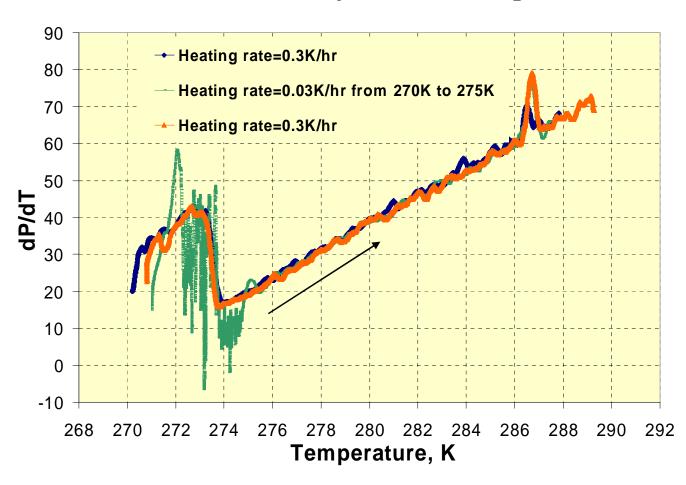
View showing viewcell in chamber and borescope placement.




Experimental Data and Analysis

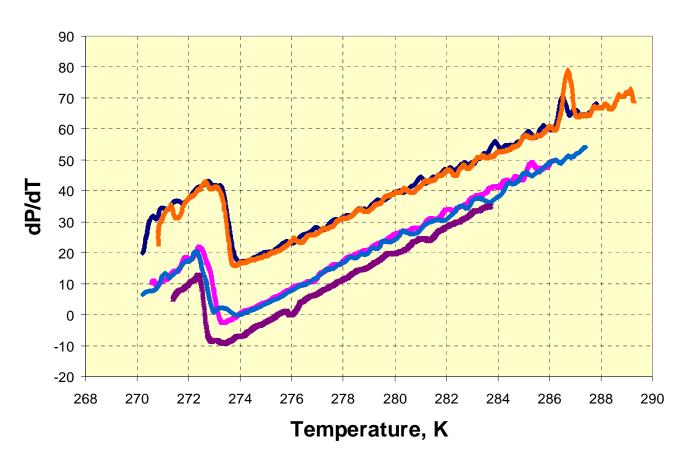
 Experimental results for two cycles at X_{CO2} = 0.016 using 18 Megohm-cm water.

Pressure vs. Temperature


dP/dT vs. Temperature

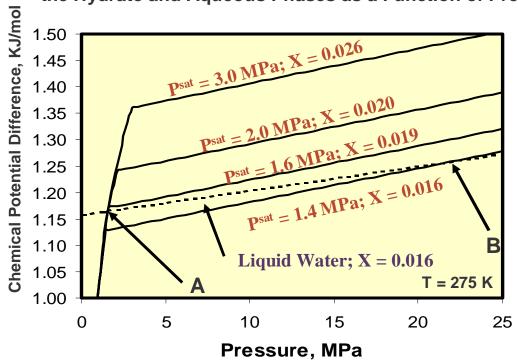
A derivative plot permits more accurate determination of the hydrate dissociation point.

Examination of Heating Rate


dP/dT vs. Temperature at Xco₂=0.016

Comparison at Different Pressures

dP/dT vs. Temperature at X_{co2} =0.016



Prediction of Single-Phase Hydrate Formation

$$\frac{\Delta \mu_{H}}{RT} = -\sum_{j, cavities} v_{j} \ln \left(1 - \sum_{i} \theta_{ji} \right) \quad \text{where,} \quad \theta_{ji} = \frac{C_{ji} f_{i}}{1 + \sum_{i} C_{ji} f_{i}}$$

$$\frac{\Delta \mu_L}{RT} = \frac{\Delta \mu_L^o}{RT_o} - \int_{T_o}^{T_F} \frac{\Delta h}{RT^2} dT + \int_{0}^{P} \frac{\Delta v}{RT} dP - \ln X_w$$

Comparison of the Chemical Potential Difference of Water in the Hydrate and Aqueous Phases as a Function of Pressure

Modified Thermodynamic Model

Hydrates form from single-phase solution, at fixed temperature

$$-\sum_{j,cavities} V_{j} \ln \left(1 - \sum_{i} \theta_{ji}\right) = \frac{\Delta \mu_{L}^{0}}{RT_{0}} + \int_{0}^{P} \frac{\Delta V}{RT} dP$$
 (1)

Hydrates form from two-phase solution, at fixed temperature

$$-\sum_{j,cavities} v_j \ln \left(1 - \sum_i \theta_{ji}^{VLH}\right) = \frac{\Delta \mu_L^0}{RT_0} + \int_0^{P^{VLH}} \frac{\Delta V}{RT} dP$$
 (2)

Subtract (2) from (1), for single hydrate species, we obtain

$$-\sum_{j,cavities} v_{j} \ln \left(\frac{1 - \theta_{ji}}{1 - \theta_{ji}^{VLH}} \right) = \int_{P^{VLH}}^{P} \frac{\Delta V}{RT} dP$$
(3)

Which gives the increase in pressure (over the VLH pressure) required to form hydrates.

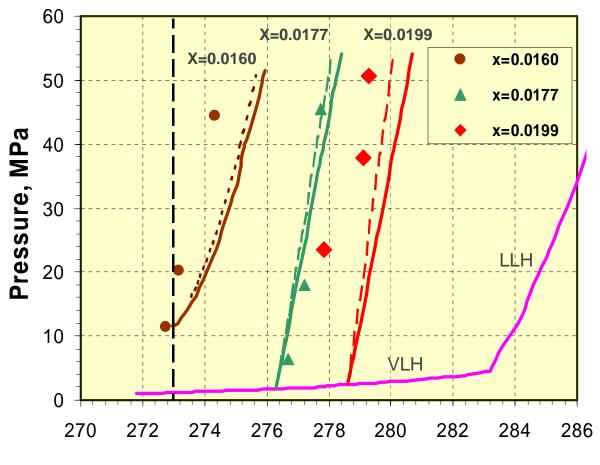
Modified Thermodynamic Model (Cont.)

Finally,

$$\sum_{j} V_{j} \ln \left[\frac{\frac{1}{C_{ji} f_{i}^{VLH}} + \frac{f_{i}^{sat}}{f_{i}^{VLH}} \exp \left(\frac{V_{i} (P - P^{sat})}{RT} \right)}{\frac{1}{C_{ji} f_{i}^{VLH}} + 1} \right] = \frac{\Delta V (P - P^{VLH})}{RT}$$

$$(4)$$

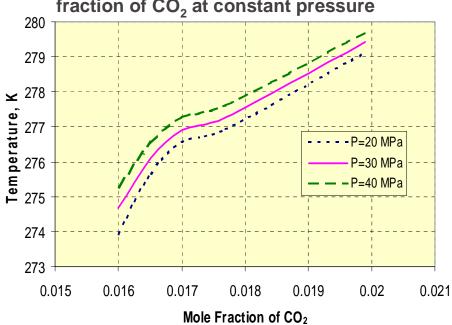
– The approximations:


$$C_{ji}f_i^{VLH} >> 1, \qquad \frac{f_i^{sat}}{f_i^{VLH}} \approx \frac{P^{sat}}{P^{VLH}}$$

We obtain,

$$\sum_{j} v_{j} \ln \left[\frac{P^{sat}}{P^{VLH}} \exp \left(\frac{\bar{V}_{i}(P - P^{sat})}{RT} \right) \right] = \frac{\Delta V(P - P^{VLH})}{RT}$$
 (5)

Comparison of Experimental and Predicted Data by the Modified Model



Temperature, K

Vertical dashed line - T=273.15 K region. Solid lines - exact model; Dashed lines - simplified model

Other Theoretical Calculations

Hydrate equilibrium temperature vs. Mole fraction of CO₂ at constant pressure

Pressure vs. Mole fraction of CO₂ at constant temperature

Summary

- Experimental procedures have been developed for determining the phase behavior of hydrate formed from single-phase aqueous solutions.
- A theoretical model is being developed to describe the behavior of hydrate formation from singlephase aqueous solutions.
- The results of this research will be useful in determining the efficiency and impacts of deepocean sequestration.

Future Work

Theoretical

- Combine "restricted rotation model" and "expanded cell model" to develop new models to provide a better understanding and prediction of the system.
- Incorporate the effect of seawater.

Experimental

- Complete experiments in freshwater.
- Perform experiments in seawater.

Acknowledgement

- Ronald Lynn (NETL)
- Charles Levander (NETL)

